Система IPS — современное средство создания электронных архивов, систем документооборота, PDM и PLM
В своих статьях сотрудники Бюро ESG неоднократно освещали тему информационного обеспечения различных стадий жизненного цикла изделий. Время вносит свои коррективы, вызванные постоянным развитием информационных технологий и необходимостью модернизации внедренных решений. С другой стороны, сейчас явно прослеживается тенденция к использованию программного инструментария, отвечающего требованиям отечественной нормативной базы и принятым у нас в стране производственным процессам. Именно эти реалии, а также накопленный опыт автоматизации деятельности проектных предприятий побудили нас написать эту статью.
Современное состояние автоматизации конструкторской деятельности, производства и информационной поддержки последующих стадий ЖЦ изделий
Компания Бюро ESG имеет большой опыт проведения работ по внедрению систем электронного архива, PDM, PLM, систем управления инженерными данными в самых разных отраслях: судостроении (ОАО «Балтийский завод» — Рособоронэкспорт, ОАО «Севмаш», ЗАО «ЦНИИ Судового машиностроения»), машиностроении (ОАО СПб «Красный Октябрь»), промышленном и гражданском строительстве (ПФ «Союзпроектверфь», ОАО «Гипроспецгаз»), атомной отрасли (ОАО «Атомпроект», ОАО «Росжелдорпроект») и на многих других предприятиях и организациях, перечисление которых не входит в цели и задачи статьи.
Подчеркнем, что внедрения проводились на базе использования различных программных систем: TDMS, Search, SmartPlant Fondation, Autodesk Vault и других, в том числе собственной разработки. Использование той или иной программной среды обусловлено отраслью, стоящими задачами и прочими факторами. Именно обширный опыт, накопленный Бюро ESG по перечисленным направлениям, позволяет нам обрисовать общую картину внедрения систем электронных архивов, систем документооборота PDM и PLM на российских предприятиях.
Современную конструкторскую, производственную деятельность, поддержку эксплуатации, модернизации и утилизации изделий невозможно представить без использования различного рода автоматизированных систем: CAD (САПР), CAM, PDM, систем технологической подготовки производства, PLMсистем. Общую картину иллюстрирует рис. 1.
Рис. 1. Общая картина автоматизации
Как правило, все перечисленные и не перечисленные средства автоматизации присутствуют лишь в некоторой степени, чаще на начальных стадиях ЖЦ изделий — конструкторской деятельности и производстве. На последующих же стадиях ЖЦ степень информационной поддержки процессов иногда крайне низка. Приведем лишь некоторые характерные для наиболее автоматизированных стадий ЖЦ примеры, иллюстрирующие реальную картину.
Заявления о «внедрении PDM или PLMтехнологий» на практике часто оказываются лишь внедрением системы электронного архива и документооборота КД и ТД, TDM, и не более. Причины:
- «игра слов» — это когда для создания функционала электронного архива и документооборота КД и ТД использована дорогостоящая PDMсистема (что часто трактуется как «внедрение PDMтехнологии», хотя такого нет, налицо лишь внедрение электронного архива и/или TDM с использованием ПО — PDMсистемы);
- подмена понятий — когда в названии программного средства присутствует аббревиатура «PDM» или «PLM», но система по роду решаемых задач не является таковой и, опять же, в лучшем случае решает две задачи, но чаще — одну из двух:
- управление работой конструкторов на уровне документов, а иногда и 3Dмоделей,
- управление электронным архивом КД и ТД.
Приведем пример: опыт компании Бюро ESG, включающий работы по созданию макета информационной модели военного корабля, показал, что на стадии ЖЦ эксплуатации наиболее важна, увы, не информация проектанта и строителя, а эксплуатационная документация, интерактивные электронные технические руководства (ИЭТР). Крайне необходима на стадии ЖЦ эксплуатации и логистическая поддержка, позволяющая в кратчайшие сроки пополнить ЗИП. Очень часто ни одна система, позиционируемая производителем как PLM, не решает «по умолчанию» задач эксплуатации, хотя, не будем отрицать, такая система вполне может быть использована при соответствующих доработках, например, и для решения вопросов логистики. Заметим, что по эффективности и затраченной на доработку трудоемкости такой подход эквивалентен использованию бухгалтерской или ERPсистемы для управления конструкторской деятельностью или текстового редактора для разработки конструкторских чертежей.
Стараясь быть объективными в оценках, не будем дальше сгущать краски, а всего лишь заметим:
- современная автоматизация конструкторской деятельности, производства, поддержки последующих стадий ЖЦ изделий часто включает лишь элементы PDM и PLM;
- часто внедрения PDM и PLM — не более чем создание электронного архива и документооборота КД и ТД;
- говорить о полном внедрении технологии PLM для всех стадий жизненного цикла изделия преждевременно.
Причины перехода на новую платформу
Несмотря на выводы предыдущего раздела статьи, отметим, что очень часто на предприятии, где внедрен электронный архив, конструкторский документооборот, автоматизированная система технологической подготовки производства, элементы PDM/PLM, работа без внедренных средств уже не представляется возможной. Это — основной показатель внедрения. В работе нашей компании был случай, когда при сбоях, произошедших в ЛВС Заказчика не по нашей вине, стал недоступен сервер электронного архива одного машиностроительного предприятия. Время от первого сбоя до первого звонка с предприятия в наш офис специалистам по техподдержке составило менее минуты. При этом все эмоциональные заявления объединяло одно — «без доступа к БД предприятие не может работать». На наш взгляд, это наиболее весомый практический показатель, превзошедший все теоретические выкладки.
Причины перехода к новым технологиям и платформам, а также расширению внедренного функционала можно отнести к нескольким группам.
Развитие технологий и средств проектирования
Один из важных факторов перехода к новым технологиям, программным решениям и расширению внедренного функционала системы конструкторского документооборота, автоматизированной системы технологической подготовки производства, элементам PDM/PLM на стадиях работы конструкторов и производства — появление средств трехмерного проектирования и законодательной базы, определяющей работу с электронными моделями.
Как уже говорилось, в большинстве случаев «внедрения PDM и PLM» речь идет о TDM, электронном архиве и документообороте КД и ТД. Такие решения (независимо от среды, в которой они строились) на практике, как правило, работают с двумерными КД и ТД. Исторически на большинстве предприятий, где реализованы подобные внедрения, в новые системы часто «перекочевали» принципы и подходы работы с двумерной конструкторской и технологической документацией с некоторыми «модернизациями» для электронных двумерных документов. Например, согласно ГОСТ 2.5012006 изменения в электронные документы вносятся в новую версию. ГОСТ 2.50390, описывающий внесение изменений «на бумаге», допускает вносить изменения непосредственно в чертеж (зачеркиванием, подчисткой (смывкой), закрашиванием белым цветом, введением новых данных) или создавать новые документы, их листы с заменой исходных, по сути — создавать версии. Пример иллюстрирует, что «модернизации» не так уж существенны, а порядок работы с двумерным электронным документом практически повторяет работу «с бумагой».
Да и сами средства электронного архива и документооборота КД и ТД, успешно внедренные в свое время, очень часто просто не поддерживают подходы к работе с 3Dмоделью, а внедренная ранее информационная система, как правило, устарела и не содержит современных механизмов интеграции, позволяющих провести эффективную доработку.
Интеграция и оптимизация производственных процессов
Следующий фактор — интеграция и оптимизация производственных процессов. Очень часто наши заказчики испытывают законное желание максимально автоматизировать всю производственную цепочку. Например, вполне логично, что для написания техпроцессов технологу полезно иметь доступ к результатам работы конструктора. Несомненно, хотелось бы иметь некую единую интегрированную среду, причем, совсем не важно, как построена такая среда — в рамках одной или нескольких систем. Главное — сквозная передача данных между участниками производственных процессов, использование и поддержка актуальной информации…
Создание интегрированных территориально разнесенных сред
Очень часто внедренные ранее системы не содержат необходимого функционала, а встроенные средства его расширения не позволяют добиться желаемого — расширить функционал или организовать необходимое интеграционное взаимодействие с другими системами. Часто КБ и производства территориально разнесены. Иногда же существующие средства не отвечают современным представлениям об эффективной автоматизации. Например, для обмена информацией между системами в судостроении применяются файлы обмена (транспортные массивы). Нередко средством организации интеграционного взаимодействия является только COMтехнология. При этом современные системы позволяют эффективно организовать территориально распределенные БД, работу с инженерными данными, обмен ими между удаленными КБ, КБ и производством.
Экономические причины
Несомненно, в любых условиях экономическая составляющая перехода к использованию современных платформ не нова, но сегодня имеет две основные составляющие:
- вложения в новую платформу должны принести экономический эффект;
- заказчики выражают желание снизить вложения и не зависеть в ряде отраслей от зарубежных производителей.
Современные информационные среды для создания систем электронного архива, документооборота, PDM и PLM
Отечественные разработки
По ряду причин мы не будем останавливаться на известных западных средствах автоматизации. В этом разделе мы постараемся перечислить решения: системы электронного конструкторского архива, документооборота, PDM, PLM, реально адаптированные к отечественным процессам, действующей нормативной базе РФ для КБ и производства, с одной стороны, и учитывающие современное состояние и наличие систем автоматизации проектирования, СУБД, сетевого оборудования и взаимодействия, с другой стороны. С приведенной оговоркой, выбор, увы, не так велик — возможно, ктолибо аргументированно возразит (за что мы заранее благодарны), но на отечественном рынке просматриваются всего лишь три решения:
- система IPS производства компании «Интермех»;
- система ЛОЦМАН:PLM производства компании «Аскон»;
- система TFlex производства компании «Топ Системы».
Целью статьи является отнюдь не формализованное сравнение этих трех систем по принципу «наличия или отсутствия» той или иной функции. Наш опыт показывает, что в большинстве случаев подобный подход весьма субъективен и некорректен. В связи с этим мы сегодня ограничимся описанием лишь системы IPS.
Система IPS
Общий функционал
Система представляет собой модульное решение, автоматизирующее конструкторские и производственные задачи — групповую работу конструкторов, конструкторский документооборот, реализацию системы электронного архива, ведение технологической подготовки производства, организацию интеграционного взаимодействия с прочими системами Предприятия. Общая структура системы IPS приведена на рис. 2.
Рис. 2. Общая структура IPS
Гетерогенность среды IPS
Не секрет, что подавляющее большинство подобных средств является разработками производителей CADсистем. При этом каждый производитель изначально решал маркетинговую задачу привлечения заказчиков в работе с набором «своих» программных продуктов. К слову, такая концепция присуща программным решениям не только в области автоматизации конструкторской деятельности и производства и не только в нашей стране, а выражает общемировую тенденцию. Некоторое время назад подобный подход претерпел изменения, и сегодня, как правило, любой производитель PDM/PLMсистемы утвердительно ответит на вопрос о наличии программного взаимодействия с «неродными» для него CADсистемами.
Систему IPS стоит отметить не как изначально созданную от «какойнибудь родной» для нее CADсистемы. Концепцию IPS можно охарактеризовать жаргонизмом «всеядность», наиболее точно обозначающим ее отношение к средствам проектирования, используемым в КБ. При этом в реализации IPS отражена сложившаяся тенденция наличия на предприятиях множества CADсистем. Отметим, что иногда такое «изобилие средств проектирования» в ряде случаев — лишь «эхо эпохи спонтанной автоматизации», а в ряде случаев — результат экономически обоснованной политики, обусловленной, в свою очередь, сложностью и спектром проектируемых изделий. IPS одинаково успешно работает со следующими CADсистемами:
- AutoCAD;
- Autodesk Inventor;
- BricsCAD;
- Catia;
- Pro/ENGINEER/PTC Creo Parametric;
- Solid Edge;
- SolidWorks;
- КОМПАС3D;
- КОМПАСГрафик.
А кроме того — с системами проектирования печатных плат электронных изделий (ECAD): Mentor Graphics и Altium Designer.
Возможности настройки функционала
Платформа IPS позволяет гибко настраивать функционал. При настройках могут быть использованы встроенные средства (без программирования). Для реализации же уникального функционала могут применяться внешние среды программирования для написания программплагинов.
Важным аспектом автоматизации проектирования, производственной деятельности, внедрения электронного архива, PDM/PLMтехнологий на современном предприятии является то, что начинать приходится отнюдь не «с чистого листа». Кроме того, как правило, уже в той или иной степени организовано хранение информации в электронном виде (электронный архив), нередки успешные внедрения конструкторского документооборота, элементов PDM и PLM. В более «продвинутых» случаях существует единое информационное пространство, организовано межсистемное взаимодействие. При этом, с одной стороны, внедренные и успешно эксплуатируемые средства требуют модернизации, связанной с переходом на новые технологии (например, при внедрении трехмерных CADсистем). С другой стороны, ранее накопленные БД, технические и организационные подходы должны и могут быть применены при внедрении новых технологий. Например, БД «двумерной» документации на ранее произведенные изделия вовсе не теряет своей актуальности при переходе к использованию 3DCADсистем (изделия эксплуатируются, модернизируются, производятся вновь независимо от того, как они спроектированы — «на плоскости» или «на бумаге»).
Организация территориально распределенной работы
Добавим, что система IPS позволяет реализовывать территориально разнесенные решения как в рамках одной стадии ЖЦ изделия, например при проектировании одним или несколькими КБ, так и в рамках различных стадий. При этом возможны, например, проектирование изделия одним или несколькими КБ и удаленный доступ технологов одного или нескольких разнесенных производств к результатам работы конструкторов, автоматизация технологической подготовки производства с использованием соответствующих модулей IPS. Механизм публикаций документов и моделей позволяет удаленному от КБ предприятию вносить аннотации, инициализировать проведение изменений, работая в единой территориально распределенной среде.
Общая структура организации распределенной работы IPS приведена на рис. 3.
Рис. 3. Организация территориально распределенной работы IPS
Пример перехода КБ к использованию IPS
Приведем реальный пример перевода с ранее внедренной системы электронного архива, документооборота с элементами PDM и PLM в одном из крупных КБ.
Основные причины проведения работ:
- переход конструкторских подразделений к трехмерному проектированию;
- отсутствие технической возможности поддержки работы с 3DCADсистемами у существующей системы электронного архива и документооборота КД с элементами PDM и PLM;
- устаревшая архитектура существующей системы и невозможность ее дальнейшего масштабирования;
- требования к территориально разнесенному взаимодействию КБ с другими КБ и производством.
Результаты работ:
- проработка вопросов миграции данных из существующей системы в IPS;
- проработка вопросов миграции процессов из существующей системы в IPS;
- программное решение — подсистема интерфейсного взаимодействия между существующей системой и IPS для обеспечения интеграционного взаимодействия систем, позволяющая осуществить «плавный переход»;
- сформулирована организационная составляющая перехода к использованию новой системы с учетом оптимизации временных и ресурсных затрат.
Первый этап — разработка технологии и программнотехнических решений — проводился на ранее спроектированном, «пилотном» изделии.
В настоящее время, согласно графику работ, специалисты нашей компании выполняют следующий этап работ, основанный на полученных ранее результатах: сопровождение проектирования двух реальных изделий 3DCADсистем и системы IPS.
Заключение
- Часто этапы автоматизации КБ и предприятий, позиционируемые как реальные внедрения PDM/PLMтехнологий, представляют собой создание электронных архивов, систем документооборота КД и ТД, TDM (чаще для двумерных документов). В большинстве случаев можно говорить лишь о реальном внедрении элементов PDM и PLM;
- с переходом к трехмерному проектированию ранее внедренные системы электронного архива и документооборота КД и ТД, внедренные элементы PDM и PLM далеко не всегда отвечают новым требованиям;
- перевод на новые платформы систем электронного архива и документооборота КД и ТД, элементов PDM и PLM — непростая, но вполне решаемая задача, требующая разработанного компанией Бюро ESG системного подхода, лишь частично освещенного в статье.
Список литературы
- Турецкий О., Тучков А., Чиковская И., Рындин А. Новая разработка компании InterCAD — система хранения документов и 3Dмоделей // REM. 2014. № 1.
- Тучков А., Рындин А. О путях создания систем управления инженерными данными // REM. 2014. № 1.
- Казанцева И., Рындин А., Резник Б. Информационнонормативное обеспечение полного жизненного цикла корабля. Опыт Бюро ESG // Korabel.ru. 2013. № 3 (21).
- Тучков А., Рындин А. Системы управления проектными данными в области промышленного и гражданского строительства: наш опыт и понимание // САПР и графика. 2013. № 2.
- Галкина О., Кораго Н., Тучков А., Рындин А. Система электронного архива Д’АР — первый шаг к построению системы управления проектными данными // САПР и графика. 2013. № 9.
- Рындин А., Турецкий О., Тучков А., Чиковская И. Создание хранилища 3Dмоделей и документов при работе с трехмерными САПР // САПР и графика. 2013. № 10.
- Рындин А., Галкина О., Благодырь А., Кораго Н. Автоматизация потоков документации — важный шаг к созданию единого информационного пространства предприятия // REM. 2012. № 4.
- Петров В. Опыт создания единого информационного пространства на СПб ОАО «Красный Октябрь» // САПР и графика. 2012. № 11.
- Малашкин Ю., Шатских Т., Юхов А., Галкина О., Караго Н., Рындин А., Фертман И. Опыт разработки системы электронного документооборота в ОАО «Гипроспецгаз» // САПР и графика. 2011. № 12.
- Санёв В., Суслов Д., Смирнов С. Использование информационных технологий в ЗАО «ЦНИИ судового машиностроения // CADmaster. 2010. № 3.
- Воробьев А., Данилова Л., Игнатов Б., Рындин А., Тучков А., Уткин А., Фертман И., Щеглов Д. Сценарий и механизмы создания единого информационного пространства // CADmaster. 2010. № 5.
- Данилова Л., Щеглов Д. Методология создания единого информационного пространства ракетнокосмической отрасли // REM. 2010. № 6.
- Галкина О.М., Рындин А.А., Рябенький Л.М., Тучков А.А., Фертман И.Б. Электронная информационная модель изделий судостроения на различных стадиях жизненного цикла // CADmaster. 2007. № 37a.
- Рындин А.А., Рябенький Л.М., Тучков А.А., Фертман И.Б. Технологии обеспечения жизненного цикла изделий // КомпьютерИНФОРМ. 2005. № 11.
- Рындин А.А., Рябенький Л.М., Тучков А.А., Фертман И.Б. Ступени внедрения ИПИтехнологий // Судостроение. 2005. № 4.