3 - 2021

Некоторый анализ международного опыта использования BIM для объектов транспортной инфраструктуры

Василий Куприяновский, Аркадий Казаринов, Владимир Талапов

Статья посвящена мировому опыту применения технологии информационного моделирования к объектам капитального строительства транспортной (прежде всего железнодорожной) инфраструктуры.

Примеры использования BIM для развития инфраструктуры

Усовершенствование технологии BIM в развитых странах (планирование, инвестиции, применение) осуществляется во взаимосвязи государства и бизнеса. Далее кратко показано, как наукоемкие отраслевые задачи стимулируют развитие технологии.

Европейский союз

Инфраструктурные проекты

Трансъевропейская транспортная сеть TEN­T

Под Трансъевропейской транспортной сетью TEN­T здесь понимается планируемая единая сеть автомобильных и железных дорог, аэропортов и водной инфраструктуры в Европейском союзе [1]. Сеть TEN­T является частью более широкой системы Трансъевропейские сети (TENs), включающей также телекоммуникационную сеть (eTEN) и сеть энергопотребления (TEN­E или Ten­Energy).

Программа проектов TEN­T предусматривает скоординированное развитие основных автомобильных дорог, железных дорог, внутренних водных путей, аэропортов, морских портов, внутренних портов и систем управления движением, обеспечивающих комплексные и интермодальные междугородние высокоскоростные маршруты. Решение о создании TEN­T было принято Европейским парламентом в 1996 году.

К настоящему времени ведутся работы по созданию десяти основных транспортных коридоров TEN­T.

Реализация такой масштабной задачи сразу поставила перед Евросоюзом проблему преодоления различий в практике проектирования и строительства, отраженных в национальных технических регламентах европейских государств. Кроме того, потребовала решения проблема унификации в рамках Евросоюза и мирового рынка киберфизических систем управления эксплуатацией: систем контроля, связи, энергоснабжения, механо­, гидро­ и пневмоприводов и т.д.

Наиболее эффективным решением проблемы в рамках цифровизации строительства явилось участие стран — членов ЕС в международных организациях по стандартизации информационного моделирования (к ним, например, относится компания buildingSMART [2]), а также активное внедрение в общеевропейских инфраструктурных проектах технологии информационного моделирования с самых первых стадий строительного процесса. Показательным примером такого применения в программе TEN­T является проект Rail Baltica.

Проект Rail Baltica, Евросоюз

Rail Baltica — проект железной дороги стандартной европейской колеи с европейской системой управления движением поездов, которая должна соединить страны Балтии, Восточную (Польша) и Западную Европу [3]. Проект с самого начала разрабатывается с помощью BIM [4].

По предварительным, хотя и весьма спорным оценкам, после завершения к 2030 году проекта Rail Baltica по Североморско­Балтийскому коридору будут перевозить около 5 млн пассажиров и 16 млн тонн грузов в год.

Генподрядчик, компания RB Rail AS, высоко оценила преимущества работы в BIM [5]. Требование внедрения BIM в своих конкурсных заданиях позволяет RB Rail Baltic проверять работу подрядчиков «на ходу» и, что более важно, гарантировать, что вся информация, собранная на этапе проектирования, где­то «записана» и может быть использована позже для управления активами. Пока у заказчика нет потребности в четком определении эксплуатационной модели проектируемого объекта, но преимущества текущих рабочих процессов информационного моделирования ожидаемо проявятся в течение самого длительного периода жизненного цикла активов — в процессе эксплуатации.

Проектная команда RB Rail AS предложила подрядчикам единые правила — «Руководство по BIM», а также подробный набор правил для проектировщиков. Проект соответствует стандартам IFC, установленным международной организацией buildingSMART. Для вокзалов проектирование уже стандартизировано.

Также отмечается, что стандарты IFC alignment, IFC bridge, IFC tunnel и другие будущие форматы IFC, связанные с гражданским сектором, будут приняты «Стратегией BIM­проекта», как только они станут достаточно зрелыми для реализации. Таким образом, по мере развития проекта можно будет предоставлять эти данные в IFC или других форматах файлов «открытых» данных для работы с подрядчиками (хотя основными программами моделирования выбраны инструменты Bentley Systems, которые в использовании формата IFC не нуждаются).

С самого начала команда RB Rail AS считала Среду общих данных (CDE) цифровой основой Rail Baltica, что сделало возможным быстрое объединение участников проекта.

Компания RB RAIL AS, которая, как заказчик, закупает проекты у разных компаний, установила четыре этапа проектирования, которые подрядчики должны выполнить после победы в тендере на заключение контракта. Общим элементом является обеспечение возможности использования в дальнейшем всей собранной информации для управления активами.

Четыре этапа проектирования (полезно сравнить с подходом к проектированию в России) представляют собой:

  1. Этап «Исследование участка» включает геотехнические исследования, топографические изыскания, лазерное сканирование и гидрологические исследования. Этот этап важен для понимания условий окружающей среды.
  2. Этап «Стоимостный инжиниринг» — здесь проектировщик должен сформулировать лучшее предложение, затем он вместе с консультантом обсуждает предварительный проект, чтобы определить лучший вариант с точки зрения MCA, CAPEX и OPEX. Цель такой работы — понять, как железная дорога будет эксплуатироваться в будущем, и найти лучший подход в долгосрочной перспективе. Проект на этом этапе будет соответствовать уровню детализации LOD 200.
  3. Этап «Мастер­дизайн» начинается после выбора лучшего варианта. Здесь проектировщик работает над точным проектным решением, которое станет основой для тендерных процессов на строительство. Проект на этом этапе соответствует уровню детализации LOD 300.
  4. Согласно местному законодательству, в случае Rail Baltica следующий этап «Детальное техническое проектирование» является задачей проектировщиков. Это будет тот проект, по которому строитель возведет объект. Здесь уровень детализации — LOD 400.

Опыт проекта Rail Baltica уже сейчас показывает: во избежание многих проблем информационные требования должны быть сформулированы очень четко. План предоставления информации о задачах (TIDP) и план выполнения BIM (BEP) должны соответствовать информационным требованиям заказчика [6] и согласовываться на начальном этапе, а затем периодически обновляться.

Также в проекте акцентируется внимание на том, что BIM создается не ради BIM. У подрядчика должна быть собственная команда, которая знает, что нужно сделать, и может это сформулировать. Необходимо обладать целостным подходом и помнить, что правильно созданная AIM (информационная модель актива) принесет важные долгосрочные выгоды для всех заинтересованных сторон.

Проект Crossrail, Великобритания

Первая очередь Crossrail (официально именуемая Elizabeth line) — это новая железнодорожная наземно­подземная линия протяженностью 117 км (73 мили), пересекающая Лондон с запада на восток [7].

Проект является одним из самых сложных инфраструктурных проектов, когда­либо реализованных в Великобритании, а также крупнейшим инфраструктурным проектом Европы.

Crossrail — это не только новая транспортная система, 
но и измененный облик Лондона

Crossrail — это не только новая транспортная система, но и измененный облик Лондона

Crossrail интегрируется с метрополитеном и национальными железнодорожными сетями. Планируется его включение в стандартную карту метрополитена Лондона.

Crossrail будет работать с использованием новых поездов класса 345­70,
каждый длиной 200 м (660 футов), перевозящих до 1500 пассажиров. Поезда (поставщик — компания Bombardier, Канада) будут двигаться на определенных участках маршрута со скоростью до 140 км/ч (90 миль/ч). Системы сигнализации и управления для Crossrail предоставляет компания Siemens.

Инновационная сложность проекта и разнообразие участников привели к тому, что техническое руководство проекта сразу сделало ставку на применение информационного моделирования. Фактически Crossrail — это главный BIM­проект Великобритании.

Строительство Crossrail началось в 2009 году, сразу после кризиса 2008 года, и все время немного опережало график. В 2011 году, когда в Великобритании были сформулированы требования, согласно которым все госбюджетные проекты, реализованные после 2016 года, должны соответствовать «BIM Уровень 2», это уже реализовывалось в Crossrail. В дальнейшем эта работа помогла правительству Великобритании в формировании его планов, поскольку уже был получен положительный пример одновременного создания физической и цифровой железной дороги, подтверждавший правильность решений по BIM [8].

Благодаря BIM компания Crossrail удерживала в допустимых рамках непредвиденные расходы для управления и снижения рисков и уделяла особое внимание процессу закупок [10]. Были утверждены обязательные для всех участников проекта нормативные документы, и одним из них стало «Руководство по BIM» [8], [11­13].

Для обеспечения эффективной совместной работы и успешной цифровизации новой железной дороги компания Crossrail установила строгие руководящие принципы и стандарты и потребовала ото всех подрядчиков, работающих над проектом, использовать процессы и программные системы Crossrail, основанные на BIM.

В качестве единой Среды общих данных была задействована система Bentley ProjectWise, ранее хорошо зарекомендовавшая себя при подготовке к Олимпиаде в Лондоне.

Вид одной из подземных станций Crossrail

Вид одной из подземных станций Crossrail

Для достижения наилучшего возможного синергизма между цифровой и физической моделями, а также обучения и консультаций персонала в области информационного моделирования компания Crossrail создала «Bentley Crossrail BIM Academy» в рамках технологического партнерства с компанией Bentley Systems — разработчиком основного программного обеспечения для реализации проекта. «Академия», ставшая корпоративным учебным центром, была первой такой организацией в Великобритании. В дальнейшем подобная практика была повторена компанией Bentley Systems при работе с проектом HS2 в Великобритании и c компанией Shell в США.

Реализация BIM в проекте Crossrail дала много преимуществ, среди которых особо отмечаются следующие [9]:

  • создание виртуальных активов, что помогает одновременно построить физическую и цифровую железную дорогу;
  • интеграция данных для всех этапов жизненного цикла;
  • совместное управление всеми типами данных;
  • единый источник информации, к которому легко обращаться;
  • сокращение потерь (минимизация коллизий);
  • повышение эффективности (более быстрые согласования при взаимодействии);
  • снижение потерь информации (при использовании только последних версий документов/чертежей);
  • повышенная безопасность (визуализация модели ведет к повышению осведомленности);
  • снижение риска рассинхронизации работ (через 4D­анализ);
  • улучшенная производительность (связывание моделей с картографированием через ГИС);
  • комплексная передача модели от проектировщика к подрядчику;
  • инновационное управление активами (связывание моделей непосредственно с базой данных активов).

Сегодня на основе созданных проектно­строительных мощностей и компетенций в области информационного моделирования начал реализовываться проект Crossrail 2 аналогичной магистрали, но пересекающей Лондон в перпендикулярном направлении. Ожидается, что благодаря полученным наработкам, прежде всего в информационном моделировании, время реализации нового проекта будет существенно меньше, чем у первой очереди Crossrail.

Проект High Speed 2, Великобритания

HS2 — это новая высокоскоростная подземно­наземная железная дорога [14], соединяющая Лондон, Мидлендс, Север и Шотландию, обслуживающая более 25 станций, включая восемь из 10 крупнейших городов Великобритании, и соединяющая около 30 млн человек. Этот проект, как считается, поможет сбалансировать региональную экономику Великобритании. Учитывая опыт Crossrail, проект HS2 полностью реализуется с использованием технологии BIM, причем также на программах Bentley Systems.

Можно выделить три основных преимущества HS2:

  • снятие междугородних поездов с существующей железнодорожной сети освободит место для пригородных и грузовых перевозок, что поможет снизить их перегруженность и убрать грузовики с дорог;
  • улучшение транспортного сообщения между городами и регионами принесет больше инвестиций в срединные земли и север Великобритании, помогая выравнять ситуацию в стране;
  • польза для окружающей среды: HS2 будет низкоуглеродистым вариантом для дальних поездок, поскольку один поезд выпускает в 17 раз меньше углерода (сажи), чем эквивалентный внутренний рейс, и в семь раз меньше углерода, чем эквивалентная поездка на автомобиле.

Согласно официальной информации, компания High Speed Two Ltd, реализующая проект, стремится задействовать BIM для хранения и использования цифровых данных. Это поможет обеспечить совместную работу по всей программе HS2 и оптимизировать проектирование для возможностей строительного производства и монтажа.

В проекте особое внимание уделяется прикладным исследованиям применения BIM, например изучению любого информационного разрыва, который может существовать между требованиями BIM HS2 и цепочкой поставок.

Научно­техническое сопровождение инфраструктурных проектов

Рамочная программа по развитию научных исследований и технологий Евросоюза Horizon 2020

На базе Рамочной программы по развитию научных исследований и технологий Евросоюза Horizon 2020 [15] работает программа прикладных исследований для железных дорог Shift2Rail — ключевая европейская железнодорожная инициатива, направленная на поиск целенаправленных исследований и инноваций (R&I) и рыночных решений путем ускорения интеграции новых и передовых технологий в перспективные решения для железнодорожных продуктов [16]. НИОКРы Shift2Rail (в том числе исследования по применению BIM), проводимые в рамках программы Horizon 2020, разрабатывают необходимую технологию для завершения строительства единого европейского железнодорожного пространства (SERA).

Описанная программа способствует повышению конкурентоспособности отрасли железнодорожного транспорта, вводя новые рыночные перспективы, а также предлагая значительные рабочие места и экспортные возможности.

Одним из примеров интеграции BIM в исследования Shift2Rail является прикладной проект Assets4Rail, о котором официальная информация говорит следующее [17]:

«Assets4Rail разделяет точку зрения Shift2Rail о наличии стареющей европейской железнодорожной инфраструктуры, которая должна справиться с ожидаемым увеличением трафика в будущем. Для достижения этой цели нам необходимо усовершенствовать технологию и создать экономически эффективную систему технического обслуживания и вмешательства для инспекции и мониторинга инфраструктуры.

Программа Assets4Rail стремится внести свой вклад в модальный сдвиг путем изучения, адаптации и тестирования передовых технологий мониторинга и технического обслуживания железнодорожных активов. Для этого Assets4Rail следует двойному подходу, включая инфраструктуру (туннель, мосты, геометрию путей и системы безопасности) и транспортные средства. Выделенная информационная модель будет краеугольным камнем инфраструктурной части проекта. Эта модель с интегрированными алгоритмами будет аккумулировать и анализировать информацию, собранную специальными датчиками, которые будут отслеживать дефекты подземных туннелей, накопление усталостных дефектов конструкций, шум и вибрации мостов, а также геометрию пути.

С другой стороны, мониторинг движения поездов будет включать установку автоматизированной системы визуализации рельсовых путей и подрамников для сбора данных с целью обнаружения конкретных типов дефектов, оказывающих воздействие на инфраструктуру. Дополнительное использование технологии RFID позволит обеспечить плавную идентификацию поездов и отдельных элементов, связанных с выявленными неисправностями подвижного состава».

Другими словами, в программе Assets4Rail речь идет о создании цифровых двойников и умной инфраструктуры.

Общие выводы

Таким образом, мы видим в Евросоюзе масштабную синхронизированную концепцию развития транспорта, в которой BIM — ключевая цифровая технология создания инженерных моделей общеевропейской инфраструктуры. Причем ее концептуальное развитие (исследования и операционные возможности) происходит в соответствии с требованиями общеевропейских концепций более высокого уровня (TENs и Horizon 2020).

При реализации BIM на конкретных железнодорожных проектах особое внимание уделяется организации взаимодействия участников проекта, информационным требованиям заказчика (требования к моделям и моделированию) и среде общих данных. Всё это реализуется с помощью тщательно подобранного (через собственный многолетний опыт либо опыт других проектов) программного обеспечения, основу которого составляет Bentley ProjectWise.

Использование технологии BIM для общего развития железнодорожного транспорта в некоторых странах

Китай

Китай, как одна из крупнейших железнодорожных держав мира, находится в ряду стран, где BIM также находит успешное применение на железных дорогах [8]. В частности, в Китае разработан и действует базирующийся на формате IFC собственный BIM­стандарт на инфраструктуру железных дорог.

Китай считается мировым лидером во внедрении высокоскоростных железнодорожных магистралей. В сентябре 2019 года в КНР закончили строительство последнего участка одного из самых протяженных скоростных железнодорожных маршрутов в мире. Теперь расстояние в 2 360 км из Пекина в Гонконг можно преодолеть за 8 ч 56 мин.

Всего же к 2019 году Китай инвестировал в развитие железных дорог 802,8 млрд юаней (117 млрд долл.), увеличив их протяженность на 4 600 км. При этом суммарная величина высокоскоростных железных дорог в стране достигла 29 тыс. км.

Подобное бурное развитие внутренней высокоскоростной сети так же, как и в Великобритании, связано с выравниванием экономики регионов, когда огромные массы рабочей силы способны перемещаться на большие расстояния в течение дня.

Высокие требования к технологичности железных дорог привели к необходимости разработки и развития собственных стандартов для национальной индустрии по созданию и управлению инженерными данными для железнодорожной инфраструктуры. Поэтому китайское подразделение международной организации buildingSMART в области стандартизации BIM первым предложило свой специализированный BIM­стандарт для железных дорог IFC Rail (China Railway BIM Alliance [18]).

Использование Китаем BIM на скоростных железных дорогах хорошо иллюстрируется публикацией о действующих ВСМ [19]: новая, 71­я скоростная линия, первая в железнодорожной отрасли Китая, внедрившая BIM с полным жизненным циклом, с 71 наземным участком, 64 мостами, 10 тоннелями и 10 станциями, включая самую глубокую и самую большую в мире станцию метро в Бадалине, и все дисциплины, участвующие в проекте.

На этом проекте China Railway Engineering Consulting Group (CEC) отвечала за предварительный и детальный проектный и строительный консалтинг. Ставя цель создать эталон в железнодорожной отрасли, компания взяла на себя обязательство использовать инновационные технологические методы для оптимизации проектирования и строительства, а также достижения BIM с полным жизненным циклом. В проекте были представлены значительные и изменяющиеся условия окружающей среды в высокогорной зоне среди окружающей культурной инфраструктуры, что требовало сложных структурных решений. Чтобы оптимизировать проект, координировать и внедрять эффективные процессы совместного проектирования и строительства, CEC требовались интегрированные приложения для цифрового дизайна.

Для того чтобы облегчить координацию процессов проектирования и строительства, CEC выбрала технологию компании Bentley Systems для создания среды общих данных. «Мы сталкиваемся с большими проблемами в совместной работе, поэтому хотим найти платформу, которая проста в использовании, обеспечивает унифицированный формат хранения данных и поддерживает совместную работу», — заявил Чжунлян Чжан, директор по BIM в CEC.

На основе интегрированных приложений ProjectWise команда Bentley Systems создала логические связи между различными дисциплинами и внутри них, обеспечивающие доступ к доверенной информации в режиме реального времени в любом месте и в любое время. Для оптимизации обмена информацией CEC использовала ProjectWise как общую платформу и внедрила инновационные методологии BIM, используя MicroStation, OpenBuildings Designer и OpenRoads Designer. Интегрированное программное решение позволило команде создать библиотеку компонентов для стандартизации проектирования и динамического моделирования, с помощью которой можно централизованно управлять на всех этапах, в одной среде цифровой совместной работы и в соответствии с теми же стандартами.

Южная Корея

Дорожная карта по информационному моделированию Rail BIM 2030 Южной Кореи [20] была разработана совместно Корейским научно­исследовательским институтом железных дорог, Университетом Йонсей и Управлением железнодорожной сети Кореи под руководством профессора Ганг Ли (Ghang Lee), директора Группы строительной информатики (BIG) на кафедре архитектуры и архитектурного проектирования в университете Йонсей в Сеуле.

В этой дорожной карте описываются пять этапов внедрения и распространения стратегий информационного моделирования в период с 2018­го по 2030 год для развития железнодорожной отрасли Южной Кореи в 4­м индустриальном укладе («Индустрия 4.0»).

В формировании дорожной карты также участвовало Корейское железнодорожное сетевое управление (KR) — правительственное агентство, которое контролирует и управляет всем жизненным циклом железной дороги, включая высокоскоростную, обычную и городскую железнодорожную инфраструктуру.

В процессе внедрения сначала был получен отрицательный опыт [8]. Учитывая, что первый крупный публичный проект BIM в Южной Корее был организован в 2008 году, можно сказать, что KR восприняло BIM относительно рано; KR осуществило свой первый проект BIM в 2009 году, затем еще восемь проектов до 2018 года. Тем не менее не так много специалистов KR знали об этих проектах, потому что они проводились на уровне отдельного проекта, а не на уровне компании. Знания и опыт, полученные в результате реализации проектов, практически обесценились, потому что эти проекты выполнялись несогласованно, без хорошей дорожной карты и стратегии.

Чтобы преодолеть эту проблему, университету Йонсей было предложено разработать «Дорожную карту Rail BIM 2030» для KR совместно с Корейским институтом железнодорожных исследований (KRRI) в рамках проекта Rail BIM, финансируемого Министерством наземной инфраструктуры и транспорта Кореи (MoLIT).

Основное различие между предыдущими дорожными картами и дорожной картой Rail BIM 2030 состоит в том, что последняя классифицирует фазы внедрения BIM по способу использования BIM, тогда как другие дорожные карты BIM классифицировали каждую фазу по размеру проекта (например, общую площадь объекта или его стоимость), представлению (чертежи, модели в IFC, файлы в формате COBie) и т.д.

Служба закупок Южной Кореи с начала 2016 года сделала обязательным использование BIM для всех проектов стоимостью более 50 млн долл., а также для всех проектов государственного сектора, поэтому для железных дорог резко встал вопрос об оптимизации процесса информационного моделирования.

«Дорожная карта Rail BIM 2030» основана на модели уровня использования BIM (BUL, уровень зрелости), которая была разработана на основе исследований BIM, продолжавшихся более десяти лет. При разработке плана действий [21] были выделены два важнейших вопроса:

  • как определить, достиг ли KR следующего уровня;
  • как осуществить проект, который позволит накапливать всё больше знаний о BIM и впоследствии делиться ими.

Последние два раздела дорожной карты Rail BIM 2030 посвящены этим вопросам. Три главных фактора: люди, процессы и технологии являются базой железнодорожного информационного моделирования Южной Кореи, но в этой дорожной карте также рассматриваются и информационные взаимодействия с внешними системами.

«Дорожная карта железнодорожного BIM 2030» состоит из пяти уровней:

  • Уровень 1: Цель 2018 (BIM 1.0) —  Преобразование 2D в 3D BIM.

Очень немногие участники проекта работают в BIM в фазе преобразования (уровень 1) 2D в 3D. При этом 2D­чертежи остаются основными средствами коммуникации. Участники могут извлечь выгоду из развертывания BIM в своих проектах, так как это позволит рассматривать разрабатываемые объекты с многих позиций и выявлять ошибки проектирования при преобразовании 2D­чертежей в модели (только проектирование). Как только появятся BIM­модели проекта, они также могут быть использованы для общественных слушаний, для общения с клиентами, проверки конструктивности и т.д.;

  • Уровень 2: Цель 2020 (BIM 2.0) —  BIM с двумя путями (параллельный BIM).

На этом этапе (уровень 2), намеченном на 2020 год, BIM будет использоваться для тех частей проекта, которые могут принести существенную пользу, например, в областях, где несколько участников взаимодействуют друг с другом, областях со сложной геометрией и участках, которые требуют применения тяжелой техники. Другие части проектов будут выполняться с использованием традиционного метода на основе 2D;

  • Уровень 3: Цель 2022 (BIM 3.0) — Интегрированный BIM, или Полный BIM.

Во время интегрированной фазы BIM (уровень 3), намеченной на 2022 год, все основные участники проекта будут создавать ВIМ­модели и работать с ними. Это позволит на основе BIM интегрировать управление затратами на строительство, планирование процессов, а также решать проблемы качества проектирования и строительства;

  • Уровень 4: Цель 2024 (BIM 4.0) — Бережливый BIM (Lean  BIM).

На этапе бережливого BIM (уровень 4), намеченного на 2024 год, управление проектами будет находиться под влиянием обрабатывающей промышленности (бережливого производства, которое внедрено в корейской промышленности), так как BIM будет поддерживать бережливое строительство, модульное строительство вне зданий, автоматизацию строительства и интегрированное управление объектами, чтобы обеспечить создание синергии для повышения производительности и качества проектов;

  • Уровень 5: Цель 2030 (BIM 5.0) — Интеллектуальный BIM (AI BIM).

На этапе интеллектуального BIM (уровень 5), намеченном на 2030 год, будут созданы Большие данные путем интеграции BIM с датчиками и несколькими базами данных.

Эти данные будут использоваться в качестве источника для принятия обоснованных решений.

Германия

Компания Deutsche Bahn AG (Deutsche Bahn Holding, DB) — основной оператор немецких железных дорог — реализует проект по внедрению BIM, цели которого состоят в управлении качеством, стоимостью и сроками [22].

Цитата, касающаяся позиции DB по внедрению BIM: «Информационное моделирование зданий предполагает планирование проекта, проектирование и строительство железнодорожных линий — со всеми мостами, туннелями, станциями и техническим оборудованием — от первоначальной идеи до эксплуатации и технического обслуживания. На этапе проектирования и строительства BIM сочетает 3D­дизайн с информацией о стоимости и сроках. Строительство происходит сначала в цифровом виде, затем в реальной жизни. Этот метод выявляет конфликты в строительном процессе задолго до начала работ на строительной площадке.

Будучи крупнейшим европейским оператором инфраструктуры, Deutsche Bahn продвигает цифровое строительство, потому что оно улучшает качество, помогает лучше управлять затратами и сроками, и в конечном счете снижает нагрузку на проектирование, строительство, эксплуатацию и обслуживание».

Подход DB во многом следует опыту Crossrail и может быть проиллюстрирован на представлении о Фазе 3 BIM — цифровом преобразовании [23].

«На Фазе 3 внедрения методология BIM должна быть полностью использована для проектирования, строительства и эксплуатации — совместно и в цифровом виде. Дальнейшее развитие цифровых средств — в приоритете компании, поэтому Фаза 3 была обозначена термином «цифровая трансформация». В центре решения этапа цифровой трансформации находится принцип цифровых двойников.

Открытость, прозрачность, четкость цели и подход, ориентированный на решение задач, должны стать основными ценностями всей инфраструктурной деятельности — как внутри DB, так и во всей цепочке поставок.

BIM предполагает также готовность железнодорожных компаний осуществлять изменения в корпоративной культуре. Это также вызывает изменения в том, как осуществляются взаимодействия участников, как поддерживаются и практикуются инициативы членами команды, руководством правлений и менеджерами компаний. BIM может получить полный эффект, только если атмосфера открытости и прозрачности преобладает среди всех участников проекта».

Цифровое проектирование и строительство будут стандартными в части использования BIM во всех крупномасштабных проектах правительства Германии начиная с 2020 года. Для подготовки к этому ранее Федеральное министерство транспорта и цифровой инфраструктуры предоставило финансирование для 13 пилотных проектов в DB с 2016 года, которые использовались с целью разработки BIM как стандарта для сложных инфраструктурных проектов на железной дороге Германии.

По состоянию на апрель 2020 года в DB Engineering & Consulting [24] в работе находится 14 сложных BIM­проектов, представляющих самые разные части железнодорожных инфраструктур в Германии, что свидетельствует о готовности DB выполнить решение правительства о внедрении BIM с 2020 года.

Малайзия

В Малайзии BIM успешно опробовали на двух крупных инфраструктурных проектах, причем оба они были связаны с созданием среды общих данных на уровне всего проекта и рассматривались государством как пилотные проекты.

Первым является создание подземно­наземной железнодорожной линии MLRT Line 2 в долине Кланг. Выполнение проекта было частью стратегии по внедрению стандартов BIM, созданию цифровых рабочих процессов, поощрению взаимодействия в области проектирования и обеспечению соответствия стандартам качества для инфраструктуры.

Вторым стал проект строительства, развития и модернизации шоссе Пан­Борнео в штате Саравак. Эта дорога стоимостью 16,5 млрд ринггитов считается крупнейшим инфраструктурным проектом, когда­либо одобренным правительством штата, и пилотным для правительства Малайзии.

Проект, который сегодня в основном завершен, представляет собой четырехполосную дорогу общей протяженностью 1060 км, идущую по пересеченной местности через существующие общины и охраняемые заповедники, то есть является объектом большого объема и достаточно высокого уровня сложности. Построенные к настоящему времени участки дороги стали фактически пилотным проектом, связанным с расширением использования BIM до создания модели управления магистралью, а в перспективе — полной системы управления активами для автомобильных дорог Малайзии.

Подземно-наземная скоростная пассажирская железнодорожная линия в долине Кланг

Подземно-наземная скоростная пассажирская железнодорожная линия в долине Кланг

Фирма Lebuhraya Borneo Utara (LBU), ранее задействованная в строительстве, теперь отвечает за интеграцию строительных данных с технологией управления операциями и обслуживанием магистрали.

При строительстве магистрали по всем правилам BIM для столь крупного объекта была создана среда общих данных на основе комплексов Bentley ProjectWise и Bentley AssetWise. Эта же среда, параллельно со строительством, задействована теперь компанией LBU и для решения задач эксплуатации автомагистрали, чтобы облегчить бесшовную интеграцию строительных данных в планирование и реализацию стратегий производительности и надежности активов. Для осуществления этого замысла были также использованы ГИС­приложения Bentley по обеспечению надежной информации в реальном времени для текущих операций, технического обслуживания автотрассы и проектирования.

В итоге, внедренная LBU и постоянно совершенствуемая система управления уже сейчас снижает риски и повышает операционную эффективность работы с объектом, улучшает процесс принятия решений и обеспечивает оптимизацию эксплуатационных затрат.

Созданная среда общих данных позволила управляющей компании проекта:

  • объединить в едином пространстве информацию в различных форматах, таких как BIM, GIS и др.;
  • структурировать информацию из географически распределенных мест;
  • организовать контроль рабочих процессов с мультидисциплинарными командами;
  • создать журналы для обеспечения контроля над процессами;
  • создать панели индикаторов прогресса для всех заинтересованных сторон, чтобы обеспечить лучшую визуализацию статуса проекта;
  • содействовать передаче информации о проекте в управление жизненным циклом активов.

Важно отметить, что эта среда общих данных была не простой системой хранения электронных документов, а цифровой платформой, основанной на стандартах серии BS 1192.

Индия

Maharashtra Metro Rail Corporation Limited (Maha Metro) — это компания, находящаяся в совместной собственности правительства Индии и правительства шт.Махараштра в соотношении 50:50.

Проекты метро в Индии подпадают под действие Закона 1978 года о железных дорогах метро (строительство и работы); Закона 2002 года о железных дорогах метрополитена (эксплуатация и техническое обслуживание); Закона о железных дорогах 1989 года, в который время от времени вносились поправки.

В настоящее время компания ведет строительство двух крупных железнодорожных проектов в городах Нагпур и Пуна. Первая очередь метро Нагпура состоит из 38 станций и двух депо общей протяженностью 38 215 км, а первая очередь метрополитена Пуны состоит из 30 станций общей протяженностью 31 254 км, в том числе 5 км подземного участка.

Участок магистрали Пан-Борнео, только что введенный в эксплуатацию

Участок магистрали Пан-Борнео, только что введенный в эксплуатацию

Проекты включают управление более чем 40 крупными подрядчиками, 106+ крупными пакетами контрактов, 60+ агентствами 3D­моделирования, работающими совместно, 100+ графиками строительства и 1000+ пользователями в среде общих данных.

Чтобы решить поставленные задачи, Maha Metro создает цифровую платформу для управления проектами, включающую систему ERP и систему информационного моделирования зданий вместе с другими компонентами, то есть центральное хранилище всей информации, используемой Maha Metro. Для этого потребуется информация о сроках выполнения проекта, отчеты о ходе работ, оценки материалов и затрат, 2D­ и 3D­чертежи, которые должны быть представлены в центральную систему подрядчиками, выполняющими инженерные, строительные и другие работы на объекте. Центральная система также будет предоставлять информацию подрядчикам для исполнения.

Maha Metro разработала концепцию проекта по развертыванию проверенного интегрированного решения ERP (Enterprise Resource Planning) и BIM для автоматизации своих операций и интеграции процессов. Был создан Офис поддержки владельцев (OSO) для стратегического и оперативного проектирования, доставки, исполнения и последующей поддержки работы.

Ключевым результатом создания OSO стало то, что внедрение ERP и BIM связано с предоставлением услуг, производственным совершенством, прозрачностью и соответствием требованиям. Роль OSO была особенно важна для установления стандартов, руководящих принципов и работы в качестве центра передового опыта для всей экосистемы и цепочки поставок проекта.

Для всех участников проекта были сформулированы «Информационные требования заказчика», которые устанавливают стандарты, методы и процедуры, обязательные для создания и управления информационными артефактами на каждом этапе проекта, чтобы убедиться, что разработанное инженерное решение соответствует целям проекта и желаемым результатам.

Для достижения целей BIM заказчиком был составлен набросок набора требований к графической и неграфической информации для объектов и активов, основанный на совместных семинарах между экспертами по конкретным дисциплинам, менеджерами BIM и группой по информации об активах.

Для реализации стратегии BIM компанией Maha Metro была создана среда общих данных.

Процесс взаимодействия участников проекта начинается с разработки отдельных интеллектуальных 3D­моделей в приложении для инженерного моделирования и проектирования, предназначенном для различных дисциплин (проектирование путей, путепроводов, сигнализации, зданий станций, геопространственный анализ, геотехнические и прочие строительные работы). Все дисциплинарные приложения без проблем взаимодействуют с СОД по интеграции инженерного проектирования, которая должна формировать центральный репозитарий для всей создаваемой проектно­технической информации (3D­модели, 2D­чертежи, а также аналитическая и проектная документация). Система поддерживает готовые шаблоны в соответствии с широко используемыми мировыми стандартами BIM и хранит общие данные, такие как топографические и аэрофотоснимки, библиотеки, исходные файлы и т.д., а также другие соответствующие документы.

Индивидуальные 3D­модели дисциплин интегрируются в основную модель, которая затем будет отправлена на рассмотрение и разметку. Система также используется для обнаружения коллизий, она действует как контекстный инструмент для визуализации, анализа и создания отчетов о проектной информации.

Созданная СОД имеет два основных программных компонента:

  • Bentley ProjectWise Design Integration (PWDI) — позволяет нескольким сторонам совместно работать над моделями и чертежами в распределенных офисах, а также контролировать утверждение и видимость этих элементов с помощью рабочего процесса BS1192. Чертежи передаются из PWDI в AssetWise ALIM (eB), когда они готовы для принятия заказчиком;
  • Bentley Asset Wise CDE (eB) — объединяет передовые методы управления конфигурацией и изменениями для управления информацией о жизненном цикле активов, интегрируя структурированные (активы) и неструктурированные данные (документы). AssetWise CDE (eB) используется в качестве центрального реестра документов и общей платформы для сбора всех результатов проекта, обеспечивая целостное представление для всех пользователей проекта механизма управления активом.

Для реализации проекта была создана «Академия развития BIM» — результат сотрудничества между Maha Metro и институтом Bentley (аналог Crossrail BIM Academy), целью которой является обеспечение принятия лучших практик управления информацией для реализации проекта и эффективности активов всеми заинтересованными сторонами проекта.

Видение «Академии» заключается в том, чтобы создать центр передового опыта мирового класса для железных дорог Индии и продвигать опыт BIM в Индии. Деятельность «Академии развития BIM» должна привести к улучшенной реализации проектов за счет технологических достижений и улучшенной мобильности данных, скоординированного управления данными между командами на протяжении всего жизненного цикла проекта, интегрированной цифровой информации для улучшения физических проектов и применения стандартов и передовых практик.

Основные выводы

В отмеченных выше странах развитие транспортной инфраструктуры ведется только с использованием технологии информационного моделирования. При этом внедрение BIM осуществляется на основе долгосрочных государственных программ, по которым разработаны концепции и дорожные карты для конкретных направлений и компаний. Основные цели всех этих программ развития железнодорожной инфраструктуры должны быть достигнуты к 2030 году.

Библиография:

  1. Trans­European Transport Network; Available: https://en.wikipedia.org/wiki/Trans­European_Transport_Network.
  2. buildingSMART; Available: https://www.buildingsmart.org.
  3. RailBaltica project; Available: https://www.railbaltica.org.
  4. RailBaltica BIM documentation; Available: https://www.railbaltica.org/rb­rail­as­bim­documentation/.
  5. Rail Baltica a view from the front line to the BIM implementation; Available: https://www.e­zigurat.com/blog/en/rail­baltica­view­front­line­bim­implementation/.
  6. EIR (информационные требования заказчика); Available: https://1­bim.ru/техническое­задание­eir/.
  7. Crossrail project; Available: https://www.crossrail.co.uk/#.
  8. Vasily Kupriyanovsky etc. BIM on the world’s railways — development, examples, and standards // International Journal of Open Information Technologies. ISSN: 2307­8162 vol. 8, no.5, 2020.
  9. BIM application in London Crossrail; Available: https://www.e­zigurat.com/blog/en/bim­application­in­london­crossrail/.
  10. Prof. S.N. Pollalis, D. Lappas Crossrail — Elizabeth Line London, UK, Case study. The Zofnass Program at Harvard, February 18, 2019.
  11. Crossrail BIM Principles (CR­XRL­Z3­RGN­CR001­50005 Revision 5.0); Available: https://learninglegacy.crossrail.co.uk/wp­content/uploads/2017/02/12F­002­03_Crossrail­BIM­Principles_CR­XRL­Z3­RGN­CR001­50005­Revision­5.0.pdf.
  12. Crossrail Asset Information A General Guide 2018; Available: https://learninglegacy.crossrail.co.uk/wp­content/uploads/2018/06/12C­004_Crossrail­Asset­Information­A­General­Guide.pdf.
  13. CROSSRAIL OPERATIONS AND MAINTENANCE INFORMATION GUIDE, Document type: Good Practice Document Author: Crossrail Ltd Publication Date: 09/07/2018; Available: https://learninglegacy.crossrail.co.uk/documents/crossrail­operations­and­maintenance­information­guide/.
  14. High Speed 2 project; Available: https://www.hs2.org.uk, https://en.wikipedia.org/wiki/High_Speed_2.
  15. EU project program Horizon 2020; Available: https://ec.europa.eu/programmes/horizon2020/en.
  16. Shift2Rail project program; Available: https://shift2rail.org.
  17. Assets4Rail project; Available: http://www.assets4rail.eu/about/.
  18. Сhina Railway BIM Alliance. Railway BIM Data Standard (Version 1.0), CRBIM10022015; Available: https://www.buildingsmart.org/wp­content/uploads/2017/09/bSI­SPEC­Rail.pdf.
  19. Steve Cockerell, Director Industry Marketing — Road and Rail, Bentley Systems. China Railway Sets Benchmark for Full­lifecycle BIM on Beijing­Zhangjiakou Rail Project; Available: https://www.cbnme.com/logistics­news/china­railway­sets­benchmark­for­full­lifecycle­bim­on­beijing­zhangjiakou­rail­project/.
  20. Korean Ministry of Land, Infrastructure and Transport, Korea Railroad Research Institute, Yonsei University «Rail BIM 2030 Roadmap»; Available: http://big.yonsei.ac.kr/railbim/reports/RailBIM2030Roadmap_Full_Eng_Final.pdf.
  21. The Rail BIM 2030 roadmap project; Available: https://www.gim­international.com/content/article/the­rail­bim­2030­roadmap­project.
  22. Digital Construction. BIM: managing quality, cost and deadlines from the very start; Available: https://www.deutschebahn.com/en/Digitalization/technology/innovations/digiatalesbauen­3520304.
  23. Implementation of Building Information Modeling (BIM) in the Infrastructure Division of Deutsche Bahn AG, Deutsche Bahn AG 2019, Available: https://www.deutschebahn.com/resource/blob/4114234/f17c340682cd9e8f6bfe3faae86e0f52/BIM­Strategy­Deutsche­Bahn­en­data.pdf.
  24. DB Engineering & Consulting; Available: https://referenzen.db­engineering­consulting.de/en.

(Окончание в следующем номере)

Более подробный вариант статьи опубликован в International Journal of Open Information Technologies, том 8, № 12 (2020) (http://injoit.org/index.php/j1/article/view/1043/1008)