КОМПАС-3D в конструировании технологической оснастки
3D-библиотека деталей пресс-форм
Сегодня конструкторы все чаще создают сложные проекты изделий в системах трехмерного твердотельного моделирования. Не остаются в стороне и конструкторы технологической оснастки, хотя надо признать, что многие по старинке проектируют штампы и пресс-формы на плоскости. Причина проста привычка. Плоское проектирование хорошо освоено, имеются доступные инструменты: в линии программных продуктов КОМПАС это системы КОМПАС-Штамп и библиотека деталей пресс-форм. Однако в плоском проектировании немало проблем, главная из которых создание чертежей на рабочие части формообразующих штампов и пресс-форм. И эта проблема успешно решается с помощью базового набора функций КОМПАС-3D, поэтому многочисленные пользователи КОМПАС-График постепенно переходят на объемное проектирование.
Мы приведем только два примера оснастки, спроектированной в КОМПАС-3D: пресс-форма (рис. 1) и штамп (рис. 2), а также расскажем о том, какие возможности пришлось задействовать для создания этих моделей.
Базовые возможности
Как уже отмечалось, главная задача при проектировании штампов и пресс-форм это создание документации на рабочие части. В КОМПАС-3D с помощью базовых возможностей и команд эта задача решается довольно легко. В частности, модели формообразующих деталей при проектировании пресс-форм (рис. 3) создаются по следующей технологии:
• строится трехмерная модель отливаемой детали с указанием конкретного материала и технологических уклонов на определенных плоскостях;
• создается промежуточная модель-заготовка нужной формы (цилиндр, призма и т.д.), в которую помещается модель отливаемой детали;
• с помощью команд «Вычесть компоненты» и «Объединить компоненты» создаются формообразующие элементы моделей матрицы и пуансона, причем на этом этапе имеется возможность задания коэффициента масштабирования, компенсирующего усадку материала;
• из исходной заготовки создаются две детали матрица и пуансон, в которых отсекаются ненужные элементы.
В дальнейшем останется только доработать эти детали согласно конструктивной необходимости.
В КОМПАС-3D из отдельных моделей можно создавать трехмерные сборки, а затем выполнять проверку сборок на собираемость с помощью команд проверки пересечений. В процессе создания моделей и сборок можно накапливать информацию для создания спецификации в полуавтоматическом режиме. При необходимости из сборок и отдельных моделей можно получать ассоциативные чертежи, которые автоматически изменяются при внесении изменения в модели.
Однако только базовых возможностей трехмерного моделирования для конструктора оснастки недостаточно. Как правило, в конструкциях штампов и пресс-форм наличествует большое количество стандартных и типовых деталей. Для ускорения процесса проектирования многие пользователи создают собственные базы таких моделей, но в условиях постоянной загруженности специалистов выбрать время для этой работы весьма затруднительно.
До настоящего момента подобные стандартные базы присутствовали в КОМПАС только в качестве двумерных библиотек, а в январе этого года, одновременно с выходом КОМПАС-3D V7 Plus, семейство прикладных библиотек пополнилось двумя новыми библиотеками для конструкторов технологической оснастки это 3D-библиотека деталей штампов и 3D-библиотека деталей пресс-форм.
3D-библиотека деталей штампов
Библиотека содержит трехмерные параметрические модели деталей штампов и стандартные таблицы размерных параметров для каждой детали (рис. 4). В библиотеке собраны детали, которые часто применяются при проектировании штампов холодной листовой штамповки:
• рабочие детали (пуансоны, матрицы);
• быстросменные рабочие детали;
• плиты;
• направляющие колонки и втулки;
• хвостовики;
• элементы фиксации (упоры, ножи, фиксаторы, прижимы);
• отлипатели, ограничители, толкатели, траверсы и другие детали;
• крепежные элементы, применяемые при проектировании штампов.
Кроме отдельных деталей, библиотека содержит и сборочные узлы:
• клиновые прижимы по ГОСТ 24531-80;
• хвостовики плавающие по ГОСТ 16719-80 и ряд других.
В библиотеке насчитывается около 250 моделей и таблиц ГОСТ.
3D-библиотека деталей пресс-форм
Эта 3D-библиотека содержит трехмерные параметрические модели стандартных и типовых деталей пресс-форм и стандартные таблицы размерных параметров для каждой детали (рис. 5). Здесь собраны детали, которые чаще всего требуются при проектировании пресс-форм следующих типов:
• для литья под давлением термопластов и цветных сплавов;
• для реактопластов и резины;
• для выплавляемых моделей.
В библиотеке также представлены детали различных конструкций пресс-форм:
• плиты, матрицы;
• колонки и втулки направляющие;
• втулки литниковые;
• колонки лекальные;
• хвостовики;
• фиксаторы, упоры;
• контртолкатели;
• ниппели и другие детали;
• крепежные элементы, применяемые при проектировании пресс-форм.
Всего в библиотеке около 90 моделей и таблиц ГОСТ.
Как работать с библиотеками
При работе с новыми библиотеками конструктор может:
• выбирать размерные параметры деталей из стандартных таблиц;
• создавать новые детали, вводя произвольные (нестандартные) значения параметров;
• размещать детали в трехмерной сборке и при необходимости корректировать координаты привязки;
• на любом этапе работы редактировать значения размерных параметров и координаты расположения объектов в сборке.
Работа начинается с выбора нужной группы деталей, которые сгруппированы в библиотеках по функциональному назначению. Выбирать можно либо из меню библиотеки, либо, что более удобно, с помощью компактных инструментальных панелей, которые становятся доступными автоматически при подключении библиотеки к системе КОМПАС 3D V7 Plus. Выбор детали из базы и ввод ее параметров осуществляются в диалоге свойств объекта (рис. 6). Чтобы обеспечить наглядность при выборе деталей из группы и при вводе параметров детали, в диалоге свойств предусмотрено слайдовое окно, где содержится изображение детали с указанием условных обозначений размерных параметров.
Сначала положение объекта в сборке указывается курсором, но затем его можно изменить, в том числе посредством ввода координат (рис. 7). Имеется также возможность поворота объекта относительно собственных осей координат.
При вставке детали в сборку информация о ней автоматически заносится в спецификацию. О том, как формируется эта информация, можно узнать из вкладки «Спецификация» окна свойств детали (рис. 8). Здесь можно просмотреть и отредактировать их исходные записи, а также указать, нужно ли создавать объект спецификации и в какой раздел его помещать в «Детали» или в «Стандартные изделия».
Для деталей из библиотеки предусмотрена возможность автоматического создания деталировочных чертежей (рис. 9). При их формировании система создает бланк чертежа, в котором заполнены основная надпись и технические требования на деталь. Присутствуют также проекции детали, которые были выбраны ранее. При редактировании параметров детали в сборке автоматически выполняется обновление изображений проекций на деталировочном чертеже.
Администратору на заметку
Библиотеки поддерживают два типа баз данных Microsoft Access и Microsoft SQL Server, а также два разных справочника материалов собственный встроенный и корпоративный справочник материалов и сортаментов АСКОН. Обе эти настройки, как и еще несколько пунктов, можно найти в меню настроек обеих библиотек (рис. 10).
* * *
Широкие функциональные возможности данных библиотек в сочетании с возможностями системы КОМПАС-3D V7 Plus, разнообразие стандартных и типовых деталей в базах библиотек все это позволяет значительно сократить затраты времени на проектирование технологической оснастки и обеспечивает высокое качество документации.
В качестве примера приведем две конструкции, реализованные с использованием новых библиотек: модель гибочного штампа (рис. 11) и модель пресс-формы (рис. 12).
Переход от двумерного проектирования к трехмерному открывает неограниченные возможности не только в области проектирования, но и в области изготовления технологической оснастки. Использование электронных твердотельных моделей позволяет уйти от бумажного проектирования. Модель изделия, созданная разработчиком, может быть использована конструктором по технологической оснастке, а модели деталей штампа или пресс-формы можно применять для изготовления деталей штампов и пресс-форм на станках с числовым программным управлением. Твердотельное проектирование позволяет ускорить процесс освоения новых видов изделий за счет повышения качества разработок, существенного сокращения времени на конструкторско-технологическую подготовку производства и на изготовление технологической оснастки.
Многие предприятия уже освоили новый подход к проектированию технологической оснастки. В прошлом году на «Конкурсе АСов КОМПьютерного 3D-моделирования» специальный приз за лучший проект по разработке технологической оснастки получило одно из крупнейших предприятий российской шинной промышленности ОАО «Омскшина», которое представило трехмерную модель пресс-формы для вулканизации покрышек ВлИ-5 (рис. 13). Изделие состоит из 148 деталей и может служить отличным примером возможностей современных систем трехмерного проектирования в разработке оснастки.
«САПР и графика» 4'2005